
Chapitre 3

Thermodynamique de

sous-systèmes simples

3.1 Thermalisation de deux gaz séparés

Un système isolé est constitué de deux sous-systèmes fermés 1 et 2
séparés par une paroi diatherme imperméable. Initialement, ils sont maintenus
à températures T i

1 et T i
2 . Le sous-système 1 contient N1 moles de gaz. L’énergie

interne du gaz est donnée par U1 = c1N1RT1, où T1 est la température du gaz,
R est une constante positive et c1 est un coefficient sans dimension. De manière
similaire, il y a N2 moles de gaz dans le sous-système 2 et l’énergie interne du
gaz est donnée par U2 = c2N2RT2.

1) Déterminer la variation d’énergie interne U1 due à la thermalisation.

2) Comparer la température initiale T i
2 du sous-système 2 et la température

finale Tf du système si la taille du sous-système 2 est beaucoup plus grande
que celle du sous-système 1.

3.2 Thermalisation de deux substances séparées

L’entropie S d’une substance particulière s’écrit en termes de son
énergie interne U et du nombre de mole N comme,

(1)

S (U, V,N) = NR ln

(
1 +

U

NE0

)
+
RU

E0
ln

(
1 +

NE0

U

)
où R et E0 sont des constantes positives. Un système est constitué de deux sous-
systèmes contenant une telle substance, avec N1 moles dans le sous-système 1
et N2 moles dans le sous-système 2. Lorsqu’ils sont mis en contact thermique,
leurs températures initiales sont T i

1 et T i
2 . Déterminer la température finale Tf

du système.

(1)
G. Carrington, Basic Thermodynamics, Oxford Science Publications (1994).
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3.3 Transfert thermique stationnaire entre deux blocs

Un système formé de deux blocs, considérés comme des systèmes
simples rigides, sont en contact thermique (fig. 3.1). Le bloc 1 est maintenu à
une température T1 et le bloc 2 à une température T2 < T1. Un transfert de
chaleur a lieu entre les blocs en régime stationnaire.

Fig. 3.1 Un transfert thermique a lieu entre un bloc 1 à température T1 et un bloc 2 à
température T2.

On dénote P
(01)
Q le transfert de chaleur de l’environnement (libellé 0) vers le

bloc 1, P
(12)
Q le transfert de chaleur du bloc 1 vers le bloc 2 et P

(20)
Q le transfert

de chaleur du bloc 2 vers l’environnement.

En régime stationnaire, montrer que les puissance thermiques exercées par
l’environnement sur le premier bloc, par le premier bloc sur le deuxième, et par
le deuxième bloc sur l’environnement sont égales et écrites comme,

PQ ≡ P (01)
Q = P

(12)
Q = P

(20)
Q

3.4 Thermalisation de deux blocs

On considère un système formé de deux blocs métalliques homogènes
libellés 1 et 2 qui peuvent être considérés comme des systèmes simples rigides.
Ces blocs sont constitués de N1 et N2 moles de métal respectivement. Ils sont
initialement séparés et ont des températures T1 et T2. Lorsqu’ils sont mis en
contact, ils atteignent progressivement l’équilibre thermique. La température
finale du système est Tf . Le système peut être considéré comme isolé. L’énergie
interne Ui du bloc i = 1, 2 est une fonction de sa température Ti et du nombre
Ni de moles de substance dans le bloc,

Ui = 3NiRTi

où R est une constante positive.

1) Déterminer la température finale Tf du système de deux blocs à l’équilibre
thermique.

2) Calculer la variation d’entropie ∆S du système de deux blocs lors du pro-
cessus qui l’amène à l’équilibre thermique.
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3.5 Diffusion d’un gaz à travers une paroi perméable

On désire modéliser la diffusion d’un gaz constitué d’une seule sub-
stance à travers une paroi perméable diatherme. On considère un système isolé
contenant N moles de gaz, formé de deux sous-systèmes de volumes identiques
séparés par une paroi perméable rigide. Le gaz diffuse d’un sous-système à
l’autre. Il y a N1(t) moles de gaz dans le sous-système 1 et N2(t) moles dans le
sous-système 2. On modélise les potentiels chimiques en considérant qu’ils sont
proportionnels à la quantité de substance :

µ1(N1) =
`

FA

N1

2τ

µ2(N2) =
`

FA

N2

2τ

où τ > 0 est un temps caractéristique de diffusion, F > 0 le coefficient de
diffusion de Fick et ` > 0 une longueur caractéristique. Initialement, il y a N0

moles dans le sous-système 1, i.e. N1(0) = N0, et N − N0 moles dans le sous-
système 2, i.e. N2(0) = N − N0. Déterminer l’évolution du nombre de moles
N1(t) et N2(t) dans les sous-systèmes 1 et 2. En déduire, le nombre de moles
dans chaque sous-système à l’équilibre.

3.6 Amortissement mécanique par transfert de chaleur

Un système isolé de volume V est constitué de deux sous-systèmes,
notés 1 et 2, séparés par une paroi imperméable, diatherme et mobile de masse
M et de volume négligeable. Les deux sous-systèmes sont à l’équilibre thermique
à température T . Ils sont constitués chacun de N moles de gaz parfait, ce qui
signifie que la pression pi du gaz dans le sous-système i, son volume Vi, le
nombre de moles N et la température T sont liés par l’équation piVi = NRT
où R est une constante positive (sect. 5.6). La masse du gaz est négligeable par
rapport à la masse de la paroi et l’énergie interne de la paroi est négligeable par
rapport à celle du gaz. Initialement, le système n’est pas à l’équilibre mécanique.
On considère que la variation de volume ∆V entre le volume Vi de chaque sous-
système et son volume V0 à l’équilibre mécanique est petite, i.e. ∆V � V0.

1) Exprimer la puissance dissipée TΠS en termes de la variation de pression
entre les sous-systèmes p1 − p2 et des dérivées temporelles du volume V1
du sous-système 1.

2) Déterminer l’équation d’évolution du volume V1 du sous-systèmes 1 à l’aide
de la condition d’évolution du deuxième principe.

3) Compte tenu du fait que les sous-systèmes sont constitués d’un gaz parfait,
à l’aide d’un développement limité au premier ordre en ∆V/V0, montrer que
l’équation du mouvement de la paroi est celle d’un oscillateur harmonique
amorti,

ẍ+ 2 γ ẋ+ ω2
0 x = 0
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où x est la coordonnée du déplacement de la paroi par rapport à la position
d’équilibre. Déterminer l’expression du coefficient de frottement γ et de la
pulsation ω0 des oscillations non-amorties.

4) En régime d’amortissement faible, i.e. γ < ω0, déterminer la période T des
oscillations amorties.

3.7 Production d’entropie par thermalisation

Dans le problème résolu 3.4 traitant de la thermalisation de deux
blocs, montrer que dans le cas particulier où N1 = N2 = N la variation d’en-
tropie,

∆S = 3N1R ln

(
Tf
T1

)
+ 3N2R ln

(
Tf
T2

)
est strictement positive.

3.8 Production d’entropie par transfert de chaleur

Un système est constitué des deux sous-systèmes, notés 1 and 2,
analysés dans le problème résolu 3.3. En utilisant le deuxième principe (2.2),
montrer que dans un état stationnaire où T1 > T2, le taux de production
d’entropie ΠS est positif lors d’un transfert de chaleur à travers les deux sous-
systèmes malgré le fait que, d’après l’équation (2.23), ΠS1

= ΠS2
= 0.

3.9 Thermalisation par radiation

T2(t)T1(t) A

Fig. 3.2 Deux blocs formés du même matériau sont séparés par une couche d’air. La
convection et la conduction thermique à travers la couche d’air sont négligeables. Les blocs
atteignent un état d’équilibre thermique dû au transfert de chaleur par radiation.
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Un système isolé est constitué de deux blocs de même substance
(fig. 3.2). Les énergies internes des blocs 1 et 2 sont U1 = C1 T1 et U2 = C2 T2 où
C1 et C2 sont deux constantes positives. Deux côtés des blocs se font exactement
face. La surface de chaque côté est A et ils sont séparés par une couche d’air.
On néglige la conductivité thermique de l’air. La puissance thermique radiative
que chaque bloc i exerce sur le bloc j, où i, j = 1, 2, s’écrit,

P
(ij)
Q = σA

(
Ti (t)

4 − Tj (t)
4
)

où σ est un coefficient constant.

1) Déterminer la température finale Tf du système lorsqu’il atteint l’équilibre.

2) Etablir l’équation d’évolution temporelle pour T1 (t) et T2 (t).

3) Considérer le cas particulier où C1 = C2 = C dans la limite de faibles
variations de température, i.e. T1 (t) = Tf +∆T1 (t) et T2 (t) = Tf +∆T2 (t)
avec ∆T1 (t)� Tf et ∆T2 (t)� Tf en tout temps. Montrer que la différence
de température ∆T (t) = ∆T1 (t)− ∆T2 (t) décrôıt exponentiellement.

3.10 Isolation thermique

On modélise un bâtiment et son isolation comme deux sous-systèmes
simples dénotés 1 et 2. L’état de chaque sous-système est caractérisé par sa
température. Le sous-système 1 représente l’isolation. Le sous-système 2 repré-
sente le reste du bâtiment pour lequel il n’y a pas de transfert de chaleur avec
l’environnement. Le transfert irréversible de chaleur entre le sous-système 2 et

le sous-système 1 est décrit par la puissance thermique P
(21)
Q (t).

PQ (t) PQ
(21)(t)

T1(t) T2(t)

Fig. 3.3 Le sous-système 1 représente l’isolation et le sous-système 2 représente le reste du
bâtiment. Le transfert de chaleur entre l’environnement et le sous-système 1 est décrit par la
puissance thermique PQ (t). Le transfert de chaleur du sous-système 2 au sous-système 1 est

décrit par la puissance thermique P
(21)
Q (t). Il n’y a pas de transfert de chaleur direct entre

l’environnement et le sous-système 2, ce qui est représenté par la paroi adiabatique entourant
le système à l’exception de la partie du sous-système 1 qui est exposée à l’environnement.

Le sous-système 2 échange de la chaleur uniquement avec le sous-système 1 à
travers une paroi diatherme de surface A, d’épaisseur ` et de conductivité ther-
mique κ. Cela est représenté sur la figure par une paroi adiabatique entourant
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tout le système, à l’exception d’une partie du sous-système 1 qui est exposée au
transfert réversible de chaleur avec l’environnement. Ce transfert de chaleur est
décrit par la puissance thermique PQ (t). Le sous-système 1 a une température
T1 (t), sa chaleur spécifique constante est C1 et son énergie interne U1 s’écrit,

U1 = C1 T1

Le sous-système 2 a une température T2, sa chaleur spécifique constante est C2

et son énergie interne s’écrit,

U2 = C2 T2

Le sous-système 1 est soumis à un transfert de chaleur périodique décrit par
la puissance PQ (t). Pour simplifier les calculs, on écrit la puissance thermique
PQ (t) sous la forme d’une fonction complexe,

PQ (t) = P0 exp (iωt)

de période,

T =
2π

ω

qui correspond typiquement à une journée. Sur le plan phénoménologique, c’est
la partie réelle de la puissance PQ (t) qui décrit l’échange de chaleur entre l’en-
vironnement et le sous-système 1. Sous l’effet du transfert de chaleur périodique
avec l’environnement, le système passe d’abord par une phase transitoire puis
atteint une phase périodique, appelé régime harmonique, où les évolutions tem-
porelles des températures complexes T1 (t) et T2 (t) des deux sous-systèmes sont
des oscillations périodiques autour d’une température réelle T0 de même période
que la puissance thermique PQ (t). Ainsi,

T1 (t) = ∆T1 exp (iωt) + T0 = |∆T1| exp
(
iφ1 (t)

)
exp (iωt) + T0

T2 (t) = ∆T2 exp (iωt) + T0 = |∆T2| exp
(
iφ2 (t)

)
exp (iωt) + T0

où |∆T1| et |∆T2| sont les modules constants des amplitudes complexes des os-
cillations de température T1 (t) et T2 (t) et φ1 et φ2 sont les angles de déphasage
de ces oscillations dans le plan complexe. Sur le plan phénoménologique, ce sont
les parties réelles des températures complexes T1 (t) et T2 (t) qui représentent
les températures physiques des deux sous-systèmes.

1) Pour une puissance thermique PQ quelconque, déterminer le système
d’équation différentielles couplées qui décrit l’évolution des températures
T1 et T2 des deux sous-systèmes.

2) Dans le cas particulier où il n’y a pas de transfert de chaleur avec l’envi-
ronnement, i.e. PQ = 0, déterminer explicitement l’évolution temporelle de
la différence de température T2 − T1.

3) Dans le cas particulier où il n’y a pas de transfert de chaleur avec l’envi-
ronnement, i.e. PQ = 0, déterminer le taux de production d’entropie ΠS .
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4) Dans le régime harmonique dû au transfert de chaleur périodique avec l’en-
vironnement, en écrivant le système d’équations d’évolution couplées sous
forme matricielle, en déduire le module du rapport des amplitudes com-
plexes des oscillations de température |∆T2/∆T1| et l’angle de déphasage
∆φ = φ2 − φ1 entre ces amplitudes complexes ∆T2 et ∆T1.


